On the Uniform Rectifiability of Ad Regular Measures with Bounded Riesz Transform Operator: the Case of Codimension

نویسنده

  • ALEXANDER VOLBERG
چکیده

We prove that if μ is a d-dimensional Ahlfors-David regular measure in R, then the boundedness of the d-dimensional Riesz transform in L(μ) implies that the non-BAUP David-Semmes cells form a Carleson family. Combined with earlier results of David and Semmes, this yields the uniform rectifiability of μ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY

Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors-David regular set of dimension n. We show that the weak-A∞ property of harmonic measure, for the open set Ω := Rn+1 \ E, implies uniform rectifiability of E. More generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the p-Laplace operator, 1 < p < ∞.

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

Analytic capacity, rectifiability, and the Cauchy integral

A compact set E ⊂ C is said to be removable for bounded analytic functions if for any open set containing E, every bounded function analytic on \ E has an analytic extension to . Analytic capacity is a notion that, in a sense, measures the size of a set as a non removable singularity. In particular, a compact set is removable if and only if its analytic capacity vanishes. The so-called Painlevé...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012